Производную применяют для нахождения площадей фигур. Примеры. Завершение решения может выглядеть так

Переходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу вычисления площади плоской фигуры с помощью определенного интеграла . Наконец-то все ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла.

Для успешного освоения материала, необходимо:

1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Не.

2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений . Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому актуальным вопросом будут также ваши знания и навыки построения чертежей. Как минимум, надо уметь строить прямую, параболу и гиперболу.

Начнем с криволинейной трапеции. Криволинейной трапеция - это плоская фигура, ограниченная графиком некоторой функции y = f (x ), осью OX и линиями x = a ; x = b .

Площадь криволинейной трапеции численно равна определенному интегралу

У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений мы говорили, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ . То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры . Рассмотрим определенный интеграл

Подынтегральная функция

задает на плоскости кривую (её при желании можно начертить), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.



Пример 1

, , , .

Это типовая формулировка задания. Важнейший момент решения – построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. С техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций . Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так.

Выполним чертеж (обратите внимание, что уравнение y = 0 задает ось OX ):

Штриховать криволинейную трапецию не будем, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке [-2; 1] график функции y = x 2 + 2 расположен над осью OX , поэтому:

Ответ: .

У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница

,

обратитесь к лекции Определенный интеграл. Примеры решений . После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 2

Вычислить площадь фигуры, ограниченной линиями xy = 4, x = 2, x = 4 и осью OX .

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Что делать, если криволинейная трапеция расположена под осью OX ?

Пример 3

Вычислить площадь фигуры, ограниченной линиями y = e - x , x = 1 и координатными осями.

Решение: Выполним чертеж:

Если криволинейная трапеция полностью расположена под осью OX , то её площадь можно найти по формуле:

В данном случае:

.

Внимание! Не следует путать два типа задач:

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями y = 2x x 2 , y = -x .

Решение: Сначала нужно выполнить чертеж. При построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы y = 2x x 2 и прямой y = -x . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Значит, нижний предел интегрирования a = 0, верхний предел интегрирования b = 3. Часто выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

Повторимся, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматоматически».

А теперь рабочая формула:

Если на отрезке [a ; b ] некоторая непрерывная функция f (x ) больше либо равна некоторой непрерывной функции g (x ), то площадь соответствующей фигуры можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из 2x x 2 необходимо вычесть –x .

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой y = 2x x 2 сверху и прямой y = -x снизу.

На отрезке 2x x 2 ≥ -x . По соответствующей формуле:

Ответ: .

На самом деле, школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. пример №3) – частный случай формулы

.

Поскольку ось OX задается уравнением y = 0, а график функции g (x ) расположен ниже оси OX , то

.

А сейчас пара примеров для самостоятельного решения

Пример 5

Пример 6

Найти площадь фигуры, ограниченной линиями

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но, по невнимательности,… найдена площадь не той фигуры.

Пример 7

Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике, по невнимательности, нередко решают, что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще и полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:

1) На отрезке [-1; 1] над осью OX расположен график прямой y = x +1;

2) На отрезке над осью OX расположен график гиперболы y = (2/x ).

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Ответ:

Пример 8

Вычислить площадь фигуры, ограниченной линиями

Представим уравнения в «школьном» виде

и выполним поточечный чертеж:

Из чертежа видно, что верхний предел у нас «хороший»: b = 1.

Но чему равен нижний предел?! Понятно, что это не целое число, но какое?

Может быть, a =(-1/3)? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что a =(-1/4). А если мы вообще неправильно построили график?

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения графиков

Для этого решаем уравнение:

.

Следовательно, a =(-1/3).

Дальнейшее решение тривиально. Главное, не запутаться в подстановках и знаках. Вычисления здесь не самые простые. На отрезке

, ,

по соответствующей формуле:

Ответ:

В заключение урока, рассмотрим два задания сложнее.

Пример 9

Вычислить площадь фигуры, ограниченной линиями

Решение: Изобразим данную фигуру на чертеже.

Для поточечного построения чертежа необходимо знать внешний вид синусоиды. Вообще, полезно знать графики всех элементарных функций, а также некоторые значения синуса. Их можно найти в таблице значений тригонометрических функций . В ряде случаев (например, в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия:

– «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке график функции y = sin 3 x расположен над осью OX , поэтому:

(1) Как интегрируются синусы и косинусы в нечетных степенях, можно посмотреть на уроке Интегралы от тригонометрических функций . Отщипываем один синус.

(2) Используем основное тригонометрическое тождество в виде

(3) Проведем замену переменной t = cos x , тогда: расположен над осью , поэтому:

.

.

Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества

.

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, и гиперболу .

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл.

С точки зрения геометрии определенный интеграл - это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости кривую, располагающуюся выше оси (желающие могут выполнить чертёж), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения - построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом - параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):

На отрезке график функции расположен над осью , поэтому:

Ответ:

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение : Выполним чертеж:

Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:


В данном случае:

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение : Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ - аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .

Этим способом лучше, по возможности, не пользоваться .

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

А теперь рабочая формула : Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура - над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой - НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

Пример 4

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение : Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие - чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов.

Действительно :

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Как вычислить объем тела вращения с помощью определенного интеграла?

Представьте некоторую плоскую фигуру на координатной плоскости. Её площадь мы уже находили. Но, кроме того, данную фигуру можно ещё и вращать, причем вращать двумя способами:

Вокруг оси абсцисс ;

Вокруг оси ординат .

В данной статье будут разобраны оба случая. Особенно интересен второй способ вращения, он вызывает наибольшие затруднения, но на самом деле решение практически такое же, как и в более распространенном вращении вокруг оси абсцисс.

Начнем с наиболее популярной разновидности вращения.

Из данной статьи вы узнаете, как найти площадь фигуры, ограниченной линиями, используя вычисления с помощью интегралов. Впервые с постановкой такой задачи мы сталкиваемся в старших классах, когда только-только пройдено изучение определенных интегралов и пора приступить к геометрической интерпретации полученных знаний на практике.

Итак, что потребуется для успешного решения задачи по поиску площади фигуры с помощью интегралов:

  • Умение грамотно строить чертежи;
  • Умение решать определенный интеграл с помощью известной формулы Ньютона-Лейбница;
  • Умение «увидеть» более выгодный вариант решения - т.е. понять, как в том или ином случае будет удобнее проводить интегрирование? Вдоль оси икс (OX) или оси игрек (OY)?
  • Ну и куда без корректных вычислений?) Сюда входит понимание как решать тот иной тип интегралов и правильные численные вычисления.

Алгоритм решения задачи по вычислению площади фигуры, ограниченной линиями:

1. Строим чертеж. Желательно это делать на листке в клетку, с большим масштабом. Подписываем карандашом над каждым графиком название этой функции. Подпись графиков делается исключительно ради удобства дальнейших вычислений. Получив график искомой фигуры, в большинстве случаев будет видно сразу, какие пределы интегрирования будут использованы. Таким образом мы решаем задачу графическим методом. Однако бывает так, что значения пределов дробные или иррациональные. Поэтому, можно сделать дополнительные расчеты, переходим в шагу два.

2. Если явно не заданы пределы интегрирования, то находим точки пересечения графиков друг с другом, и смотрим, совпадает ли наше графическое решение с аналитическим.

3. Далее, необходимо проанализировать чертеж. В зависимости от того, как располагаются графики функций, существуют разные подходы к нахождению площади фигуры. Рассмотрим разные примеры на нахождение площади фигуры при помощи интегралов.

3.1. Самый классический и простой вариант задачи, это когда нужно найти площадь криволинейной трапеции. Что такое криволинейная трапеция? Это плоская фигура, ограниченная осью икс (у = 0) , прямыми х = а, х = b и любой кривой, непрерывной на промежутке от a до b . При этом, данная фигура неотрицательна и располагается не ниже оси абсцисс. В этом случае, площадь криволинейной трапеции численно равна определенному интегралу, вычисляемого по формуле Ньютона-Лейбница:

Пример 1 y = x2 — 3x + 3, x = 1, x = 3, y = 0 .

Какими линиями ограничена фигура? Имеем параболу y = x2 — 3x + 3 , которая располагается над осью ОХ , она неотрицательна, т.к. все точки этой параболы имеют положительные значения. Далее, заданы прямые х = 1 и х = 3 , которые пролегают параллельно оси ОУ , являются ограничительными линиями фигуры слева и справа. Ну и у = 0 , она же ось икс, которая ограничивает фигуру снизу. Полученная фигура заштрихована, как видно из рисунка слева. В данном случае, можно сразу приступать к решению задачи. Перед нами простой пример криволинейной трапеции, которую далее решаем с помощью формулы Ньютона-Лейбница.

3.2. В предыдущем пункте 3.1 разобран случай, когда криволинейная трапеция расположена над осью икс. Теперь рассмотрим случай, когда условия задачи такие же, за исключением того, что функция пролегает под осью икс. К стандартной формуле Ньютона-Лейбница добавляется минус. Как решать подобную задачу рассмотрим далее.

Пример 2 . Вычислить площадь фигуры, ограниченной линиями y = x2 + 6x + 2, x = -4, x = -1, y = 0 .

В данном примере имеем параболу y = x2 + 6x + 2 , которая берет свое начало из-под оси ОХ , прямые х = -4, х = -1, у = 0 . Здесь у = 0 ограничивает искомую фигуру сверху. Прямые х = -4 и х = -1 это границы, в пределах которых будет вычисляться определенный интеграл. Принцип решения задачи на поиск площади фигуры практически полностью совпадает с примером номер 1. Единственное различие в том, что заданная функция не положительная, и все также непрерывная на промежутке [-4; -1] . Что значит не положительная? Как видно из рисунка, фигура, которая заключается в рамках заданных иксов имеет исключительно «отрицательные» координаты, что нам и требуется увидеть и помнить при решении задачи. Площадь фигуры ищем по формуле Ньютона-Лейбница, только со знаком минус в начале.

Статья не завершена.

В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.


Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".

Введите функцию, для которой надо найти интеграл

Калькулятор предоставляет ПОДРОБНОЕ решение определённых интегралов.

Этот калькулятор находит решение определенного интеграла от функции f(x) с данными верхними и нижними пределами.

Примеры

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

Sqrt(x)/(x + 1)

Кубический корень

Cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

X*arcsin(x)

Арккосинус

X*arccos(x)

Применение логарифма

X*log(x, 10)

Натуральный логарифм

Экспонента

Tg(x)*sin(x)

Котангенс

Ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

X*arctg(x)

Арккотангенс

X*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

Ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

X^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

X^2*arctgh(x)*arcctgh(x)

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x

В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание
Другие функции: floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция - округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция - Знак x erf(x) Функция ошибок (или интеграл вероятности) laplace(x) Функция Лапласа

ellasarvarova.ru - Женщина в каждой из нас